FMUSER Wirless Transmit Video And Audio More Easier !
es.fmuser.org
it.fmuser.org
fr.fmuser.org
de.fmuser.org
af.fmuser.org ->Afrikaans
sq.fmuser.org ->Albanian
ar.fmuser.org ->Arabic
hy.fmuser.org ->Armenian
az.fmuser.org ->Azerbaijani
eu.fmuser.org ->Basque
be.fmuser.org ->Belarusian
bg.fmuser.org ->Bulgarian
ca.fmuser.org ->Catalan
zh-CN.fmuser.org ->Chinese (Simplified)
zh-TW.fmuser.org ->Chinese (Traditional)
hr.fmuser.org ->Croatian
cs.fmuser.org ->Czech
da.fmuser.org ->Danish
nl.fmuser.org ->Dutch
et.fmuser.org ->Estonian
tl.fmuser.org ->Filipino
fi.fmuser.org ->Finnish
fr.fmuser.org ->French
gl.fmuser.org ->Galician
ka.fmuser.org ->Georgian
de.fmuser.org ->German
el.fmuser.org ->Greek
ht.fmuser.org ->Haitian Creole
iw.fmuser.org ->Hebrew
hi.fmuser.org ->Hindi
hu.fmuser.org ->Hungarian
is.fmuser.org ->Icelandic
id.fmuser.org ->Indonesian
ga.fmuser.org ->Irish
it.fmuser.org ->Italian
ja.fmuser.org ->Japanese
ko.fmuser.org ->Korean
lv.fmuser.org ->Latvian
lt.fmuser.org ->Lithuanian
mk.fmuser.org ->Macedonian
ms.fmuser.org ->Malay
mt.fmuser.org ->Maltese
no.fmuser.org ->Norwegian
fa.fmuser.org ->Persian
pl.fmuser.org ->Polish
pt.fmuser.org ->Portuguese
ro.fmuser.org ->Romanian
ru.fmuser.org ->Russian
sr.fmuser.org ->Serbian
sk.fmuser.org ->Slovak
sl.fmuser.org ->Slovenian
es.fmuser.org ->Spanish
sw.fmuser.org ->Swahili
sv.fmuser.org ->Swedish
th.fmuser.org ->Thai
tr.fmuser.org ->Turkish
uk.fmuser.org ->Ukrainian
ur.fmuser.org ->Urdu
vi.fmuser.org ->Vietnamese
cy.fmuser.org ->Welsh
yi.fmuser.org ->Yiddish
As you understand, the voltage over the loop filter will vary depentent of the current to it.
Okay, lets go futher and make a Phase loocked loop (PLL) system.
I have added a few parts to the system. A voltage controlled oscillator (VCO) and a frequency divider (N divider) where the divider rate can be set to any number. Let's explain the system with an example:
As you can see we feed the A input of the phase detector with a reference frequency of 50kHz.
In this example the VCO has this data.
Vout = 0V give 88MHz out of the oscillator
Vout = 5V give 108MHz out of the oscillator.
The N divider is set to divid with 1800.
First the (Vout) is 0V and the VCO (Fout) will oscillate at about 88 MHz. The frequency from the VCO (Fout) is divided with 1800 (N divider) and the output will be about 48.9KHz. This frequency is feeded to the input B of the phase detector. The phase detector compares the two input frequencies and since A is higher than B, the current pump will deliver current to the output loop filter. The delivered current enters the loop filter and is transformed into a voltage (Vout). Since the (Vout) start to rise, the VCO (Fout) frequency also increases.
When (Vout) is 2.5V the VCO frequency is 90 MHz. The divider divides it with 1800 and the output will be = 50KHz.
Now both A and B of the phase comparator is 50kHz and the current pump stops to deliver current and the VCO (Fout) stay at 90MHz.
What happends if the (Vout) is 5V?
At 5V the VCO (Fout) frequency is 108MHz and after the divider (1800) the frequency will be about 60kHz. Now B input of the phase detector has higher frequency than A and the current pump starts to zink current from the loop filter and thereby the voltage (Vout) will drop.
The reslut of the PLL system is that the phase detector locks the VCO frequency to desired frequency by using a phase comparator.
By changing the value of the N divider, you can lock the VCO to any frequency from 88 to 108 MHz in step of 50kHz.
I hope this example gives you understanding of the PLL system.
In frequency synthesiser circuits as LMX-serie you can program both the N divider and the reference frequency to many combinations.
The circuit also has sensitive high frequency input for probing the VCO to the N divider.
For more info I suggest you download the datasheet of the circuit.
Hardware and schematic
Please look at the schematic to follow my function description. The main oscillator is based around the transistor Q1. This oscillator is called Colpitts oscillator and it is voltage controlled to achieve FM (frequency modulation) and PLL control. Q1 should be a HF transistor to work well, but in this case I have used a cheap and common BC817 transistor which works great.
The oscillator needs a LC tank to oscillate properly. In this case the LC tank consist of L1 with the varicap D1 and the two capacitor (C4, C5) at the base-emitter of the transistor. The value of C1 will set the VCO range.
The large value of C1 the wider will the VCO range be. Since the capacitance of the varicap (D1) is dependent of the voltage over it, the capacitance will change with changed voltage.
When the voltage change, so will the oscillating frequency. In this way you achieve a VCO function.
You can use many different varicap diod to get it working. In my case I use a varicap (SMV1251) which has a wide range 3-55pF to secure the VCO range (88 to 108MHz).
Inside the dashed blue box you will find the audio modulation unit. This unit also include a second varicap (D2). This varicap is biased with a DC voltage about 3-4 volt DC. This varcap is also included in the LC tank by a capacitor (C2) of 3.3pF. The input audio will passes the capacitor (C15) and be added to the DC voltage. Since the input audio voltage change in amplitude, the total voltage over the varicap (D2) will also change. As an effect of this the capacitance will change and so will the LC tank frequency.
You have a Frequency Modulation of the carrier signal. The modulation depth is set by the input amplitude. The signal should be around 1Vpp.
Just connect the audio to negative side of C15. Now you wonder why I don't use the first varicap (D1) to modulate the signal?
I could do that if the frequency would be fixed, but in this project the frequency range is 88 to 108MHz.
If you look at the varicap curve to the left of the schematic. You can easily see that the relative capacitance change more at lower voltage than it does at higher voltage.
Imagine I use an audio signal with constant amplitude. If I would modulated the (D1) varicap with this amplitude the modulation depth would differ depending on the voltage over the varicap (D1). Remember that the voltage over varicap (D1) is about 0V at 88MHz and +5V at 108MHz. By use two varicap (D1) and (D2) I get the same modulation depth from 88 to 108MHz.
Now, look at the right of the LMX2322 circuit and you find the reference frequency oscillator VCTCXO.
This oscillator is based on a very accurate VCTCXO (Voltage Controlled Temperature controlled Crystal Oscillator) at 16.8MHz. Pin 1 is the calibration input. The voltage here should be 2.5 Volt. The performance of the VCTCXO crystal in this construction is so good that you do not need to make any reference tuning.
A small portion of the VCO energy is feed back to the PLL circuit through resistor (R4) and (C16).
The PLL will then use the VCO frequency to regulate the tuning voltage.
At pin 5 of LMX2322 you will find a PLL filter to form the (Vtune) which is the regulating voltage of the VCO.
The PLL try to regulate the (Vtune) so the VCO oscillator frequency is locked to desired frequency. You will also find the TP (test Point) here.
The last part we haven't discussed is the RF power amplifier (Q2). Some energy from the VCO is taped by (C6) to the base of the (Q2).
Q2 should be a RF transistor to obtain best RF amplification. To use a BC817 here will work, but not good.
The emitter resistor (R12 and R16) set the current through this transistor and with R12, R16 = 100 ohm and +9V power supply you will easy have 150mW of output power into 50 ohm load. You can lower the resistors (R12, R16) to get high power, but please don't overload this poor transistor, it will be hot and burn up…
Current consumption of VCO unit = 60 mA @ 9V.
PCB
168tx.pdf | PCB file for FM transmitter (pdf). |
The RF unit is now ready to be connected to the Digitally controlled FM transmitter with 2 line LCD display
How to make an iductors L1
The inductor L1 will set the frequency range:
This is how it is made:
I use enamelled cu wire of 0.8mm. This coil should be 3 turns with a diameter of 6.5mm, so I use a drill of 6.5 mm. (Picture above show a coil of 4 turns!)
First I make a "dummy coil" to measure how long piece of wire it needs. I wrap the wire 3 turns and make the connection pointing straight down and cut the wires.
I then stretch out the "dummy coil" back to a wire to measure how long it was (the wire at top). I take a new wire and make it same length (the wire at bottom).
I use a sharp razor blade to scratch of the enamel at both end of the new straight wire. This new wire is perfect in length and no enamel cover the two ends.
(You have to remove the enamel before you wrapped the cu wire around the drill, else the coil will be bad both in shape and soldering.)
I take the new straight cu wire and wrap it around the drill and make the ends point down. I solder the ends and the coils is ready.
(Picture above show a coil of 4 turns!)
Component support
This project has be constructed to use standard (and easy to find) components.
People often write to me and ask for components, PCB or kits for my projects.
All component for FM PLL controlled VCO unit (Part II) are included in the KIT (Click here to download component list.txt).
The kit cost 35 Euro (48 USD) and includes:
|
|
1 pcs
|
|
1 pcs
|
|
1 pcs
|
|
1 pcs
|
|
1 pcs
|
|
1 pcs
|
|
3 pcs
|
|
1 pcs
|
|
3 pcs
|
|
1 pcs
|
|
4 pcs
|
|
1 pcs
|
|
4 pcs
|
|
1 pcs
|
|
1 pcs
|
|
2 pcs
|
|
2 pcs
|
|
2 pcs
|
|
1 pcs
|
|
6 pcs
|
|
8 pcs
|
|
2 pcs
|
|
2 pcs
|
|
2 pcs
|
|
Order/question
Please enter your email, so I can reply.Please type your Order/Question Please e-mail Me for ordering
|
When the transmitter is close to match (tuned correct) the main current starts to drop, and you will still have high field strength. The field strength can even increase when the main current drops. Then you know the match is good, because most of the energy is going out of the antenna and not reflected back into the amplifier.
How far will it transmit?
This question is very hard to answer. The transmitting distance is very dependent on the environment around you. If you live in a big city with lot of concrete and iron, the transmitter will probably reach about 400m. If you live in smaller city with more open space and not so much concrete and iron your transmitter will reach much longer distance, up to 3km. If you have very open space you will transmit up to 10km.
One basic rule is to place the antenna at a high and open position. That will improve your transmitting distance quit a lot.
How to build a dipole antenna in 45 minutes
I will explain how to build a simple but very good dipole antenna, and it only took 45 minutes to build.
The antenna rod is made of 6mm copper tube I found in a shop for cars. It is actually tubes for the breaks, but the tube works great as antenna rods.
You can use all kinds of tubes or wire. The benefit of using a tube, is that it is strong and the wider tube diameter you use, the wider frequency range (bandwidth) you will also get. I have noticed that the transmitter gives highest output power around 104-108 MHz so I set my transmitter to 106 MHz.
The calculation gave the rod length of 67 cm. So I cut off two rods at 67cm each. I also found plastic tube to hold the rods and to give it a more stable construction.
I use one plastic tube as boom and a second to contain the two rods. You can see how I used black duct tape to hold the two tubes together.
Inside the vertical tube are the two rods and I have connected a coax to the two rods. The coax is twisted 10 turns around the horizontal tube to form a balun (rf choke) to prevent reflections. This is a poor mans balun and lot of improvement can be done here.
I placed the antenna on my balcony and connected it to the transmitter and turned on power supply. I live in a medium city so I took my car and drove away to test the performance. The signal was perfect with crystal clear stereo audio. There are many concrete building around my transmitter which affects the transmitting range.
The transmitter worked up to 5 km distance when the sight was clear (could not obtain line-in-sight). In city environment it reached 1-2km, due to heavy concrete.
I find this performance very good for a 1W amplifier with an antenna which took me 45 min to build. One should also take in account that the FM signal is Wide FM, which consume much more energy than a narrow FM signal does. All together, I was very pleased with the result.
Antenna testing and measuring
The pic below show you the performance of this antenna.
Thanks to a complex antenna analyser, I have been able to get a plot of the antenna performance.
The red curve show the SWR and the grey show Z (impedance). What we want is a SWR of 1 and Z to be close match to 50 ohm.
As you can see, the best match for this antenna is at 102 MHz where we have SWR = 1.13 and Z = 53 ohm.
I did run my antenna at 106 MHz, where the match is worse SWR = 1.56 and Z = 32 ohm.
Conclusion: My antenna was not perfect for 106 MHz, I should re-run my filed test at 102 MHz. I will probably get better results and longer transmitting distance.
Or I should make the antenna a bit shorter to match the frequency 106MHz.
(I am sure I will come back to this topic with more measurements and tests, although I am impressed of the transmitter performance even when the antenna was poor.)
Frequency
|
SWR
|
Z (imp)
|
102.00 MHz
|
1.13
|
53.1
|
106.00 MHz
|
1.56
|
32.2
|
Special modification of the VCO This modification is only needed if you want to extend the VCO range! The VCO is based around Q1 and the VCO range is from 88 to 108 MHz. If transistor Q1 is changed to FMMT5179 (you find on my component page) the VCO range will change dramatically. This is becasue the FMMT5179 has very low internal capacitances. The inductor L1 will set the frequency range:
|
Our other product:
Professional FM Radio Station Equipment Package
|
||
|
Enter email to get a surprise
es.fmuser.org
it.fmuser.org
fr.fmuser.org
de.fmuser.org
af.fmuser.org ->Afrikaans
sq.fmuser.org ->Albanian
ar.fmuser.org ->Arabic
hy.fmuser.org ->Armenian
az.fmuser.org ->Azerbaijani
eu.fmuser.org ->Basque
be.fmuser.org ->Belarusian
bg.fmuser.org ->Bulgarian
ca.fmuser.org ->Catalan
zh-CN.fmuser.org ->Chinese (Simplified)
zh-TW.fmuser.org ->Chinese (Traditional)
hr.fmuser.org ->Croatian
cs.fmuser.org ->Czech
da.fmuser.org ->Danish
nl.fmuser.org ->Dutch
et.fmuser.org ->Estonian
tl.fmuser.org ->Filipino
fi.fmuser.org ->Finnish
fr.fmuser.org ->French
gl.fmuser.org ->Galician
ka.fmuser.org ->Georgian
de.fmuser.org ->German
el.fmuser.org ->Greek
ht.fmuser.org ->Haitian Creole
iw.fmuser.org ->Hebrew
hi.fmuser.org ->Hindi
hu.fmuser.org ->Hungarian
is.fmuser.org ->Icelandic
id.fmuser.org ->Indonesian
ga.fmuser.org ->Irish
it.fmuser.org ->Italian
ja.fmuser.org ->Japanese
ko.fmuser.org ->Korean
lv.fmuser.org ->Latvian
lt.fmuser.org ->Lithuanian
mk.fmuser.org ->Macedonian
ms.fmuser.org ->Malay
mt.fmuser.org ->Maltese
no.fmuser.org ->Norwegian
fa.fmuser.org ->Persian
pl.fmuser.org ->Polish
pt.fmuser.org ->Portuguese
ro.fmuser.org ->Romanian
ru.fmuser.org ->Russian
sr.fmuser.org ->Serbian
sk.fmuser.org ->Slovak
sl.fmuser.org ->Slovenian
es.fmuser.org ->Spanish
sw.fmuser.org ->Swahili
sv.fmuser.org ->Swedish
th.fmuser.org ->Thai
tr.fmuser.org ->Turkish
uk.fmuser.org ->Ukrainian
ur.fmuser.org ->Urdu
vi.fmuser.org ->Vietnamese
cy.fmuser.org ->Welsh
yi.fmuser.org ->Yiddish
FMUSER Wirless Transmit Video And Audio More Easier !
Contact
Address:
No.305 Room HuiLan Building No.273 Huanpu Road Guangzhou China 510620
Categories
Newsletter